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3.  Phys. A :  Math. Gen. 17 (1984) L209-L214. Printed in Great Britain 

LETTER TO THE EDITOR 

Spiralling self lavoiding walks? 

D J Klein, G E Hite, T G Schmalz and W A Seitz 
Department of Marine Sciences, Texas A&M University at Galveston, Galveston, Texas 
77553, USA 

Received 2 December 1983 

Abstract. Self-avoiding walks which only step straight-ahead or to the left are studied. 
Heuristic arguments, generating function studies, and extrapolation of few-step enumer- 
ations are described. Exact asymptotic results are obtained. It is found that these spiralling 
walks are in a new ‘universality class’, wherein the number of n-step walks does not behave 
in a ‘size-extensive’ manner. 

The incorporation of volume exclusion when embedding structures on a lattice seems 
to be a difficult problem with many applications. For instance, self-avoiding walks 
(SAWS) have received wide attention as simple models for chain polymers (see, e.g., 
deGennes 1979). The functional form for the asymptotic behaviour of various proper- 
ties as a function of walk length identifies a general ‘universality class’, and it is of 
interest to determine what modifications change this classification. SAWS with a different 
weight for stepping straight ahead but equal (non-negative finite) weights for any turn, 
evidently belong to the same universality class, whereas SAWS with a weight anisotropi- 
cally directed with reference to a fixed lattice direction are in another class (see, e.g., 
Nadal et a1 1982, or Redner and Majid 1983). Recently Privman (1983) has suggested 
that SAWS with a preference for turning counterclockwise might be in yet another 
universality class. 

Here on the square-planar lattice we study such SAWS turning only in one direction 
as one proceeds along the walk from one end to the other. Typically these walks have 
a scroll-like structure such as illustrated in figure 1. But these scroll-like walks can 
be separated, as indicated by the arrow in figure 1 ,  into two purely spiralling SAWS 

which should exhibit much the same asymptotic behaviour. The number c, and the 
root-mean-square end-to-end separation r, of such n-step purely spiralling SAWS are 
expected to exhibit asymptotic behaviour 

c, - n” exp(an*) 

r, - nu. 
Should it turn out that CL f 1, then the conformational entropy In c, would not be 
‘size-extensive’ (in terms of n as a measure of size). 

Heuristic arguments involving the exponents p and v can be made. Consider the 
process of ‘growing’ outward spiralling SAWS: each step is taken either to the left or 
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Figure 1. An example of a SAW turning only 
counterclockwise as one proceeds along the walk 
from the left end. 
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Figure 2. An example of a purely spiralling SAW. 

preceding portion of the walk is encoun- 
tered the growth process fails and is re-initiated for another walk?. Now while 
proceding along a side as from A to B in figure 2 ,  any (left) turn will (at least, 
eventually) lead to failure; but following B along to C there are two choices which do 
not lead to (eventual) certain failure; once a turn is made, say at D, there is again a 
period along a side with only one choice avoiding certain failure; etc. Since the average 
length of a side should be - r ,  - n” and since the average number of steps beyond a 
side (as from B to D in figure 2 )  might be expected to be finite (say 1 < A  - no) ,  the 
average fraction of times that a non-unique failure-avoiding choice is possible is 
=A/ (  n u  + A )  = A/ n”. Since it is only with these non-unique failure-avoiding choices 
that there are non-identity (multiplicative) contributions to c,, we anticipate that 
Cn - kn(A’n‘)  = kA(”’-’. Thus a relation between exponents appearing in equations (1) 
and ( 2 )  is indicated, 

p + v = l .  (3) 
Next let m, denote the average number of turns in a spiral and note that the average 
distance between the ith and ( i +  1)th turns should be -iA. Then we anticipate that 

n - 3 i A  - mzA or m, - n”’. (4) 
1 = 1  

Moreover since the last side of an average spiral should have a length -m,A, the 
spiral size r, should scale -mnA, so that 

and v = l  2 ( 5 )  

(where equation (3) has been recalled). 
Further arguments can be made based upon a particular labelling of the outward 

spiralling SAWS, which we shall restrict so that its last vertical side is longer than 
previous successive progressions of vertical steps, and similarly for the horizontal case. 

t In treating SAWS it is generally of crucial importance to account either explicitly (as summarised in Wall 
1964, or Windwer 1970) or implicitly (via ‘weights’, as summarised in Windwer 1970, or McCrackin 1972) 
for such ‘failures’ and ‘re-initiations’ so as to obtain the desired statistics where each possible SAW is counted 
equally. 
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Then the progressions of successive vertical steps (strictly) increase as one cycles 
outward from the centre of a cycle. Thus if there are U vertical steps each possible 
sequence of vertical progressions is uniquely identified by the partition of U whose 
parts are the lengths of these progressions. A similar partition of h, the number of 
horizontal steps, uniquely identifies the horizontal progressions, the number of which 
can differ by no more than one from the number of vertical progressions. Clearly, 
then there is essentially? a one-to-one correspondence between our spirals and a pair 
of such partitions, each restricted to have distinct parts the number of which differ by 
no more than one in each partition. Thus the spiralling walk problem is framed in 
terms of partitions, the theory of which is extensive (e.g., in Hardy and Wright 1938, 
or Andrews 1976). 

We consider the class % ( j ,  m )  of partitions of j such that there are m unequal 
parts (2 1) in each partition. Now the members of %( j ,  m )  are in one-to-one correspon- 
dence with the members of the class @( j ,  m )  of partitions of j such that the only parts 
are 1 , 2 , .  . . , m each occurring at least once. This result may be seen on representing 
partitions in terms of a Young diagram (or Ferrer's graph), such as illustrated in figure 
3. The correspondence between the members of %(j ,  m )  and @(j ,  m )  is simply that 
between the diagram of the partition and that with the conjugate diagram, obtained 
by rotating a diagram (by T )  about the diagonal axis passing through the upper 
left-hand corner. (For inztance, the two diagrams in figure 3 are $onjugate.) Thus 
the classes U( j ,  m )  and %( j ,  m )  have the same order I %( j ,  m)l = I %( j ,  m)l.  Further 
they have the same generating function 

Fwre 3. Two examples of Young diagrams corresponding to partitions of 12, namely 
[6, 3, 2, 11 and [4, 3,  2, 1 ,  1 ,  11. 

Now via standard considerations (as in Hardy and Wright 1938) the generating function 
for @ ( j ,  m )  is seen to be 

m 

Of course Itl< 1 so that ( 1  - t i ) - '  can be expanded as Zjao  ti'. The desired generating 
function for spiralling SAWS is defined by 

t Actually to achieve this we need also to fix the origin and the direction of the first step of the spirals. 
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Because of the correspondence of these SAWS with pairs of partitions (with m-values 
differing by no more than one), we have 

(9) 

Now F ( t )  may be used to study spiralling SAWS. First the (m)th and (m - 1)th 
terms of (9) are compared, the ratio of the (m)th to (m - 1)th terms being t2" ( t  + 
t m c l ) (  1 - t2")-'(  1 - f m + ' ) - '  and we see that no matter how small 1 -It( > 0 is, there 
exists an m-value beyond which this ratio has a decreasing magnitude <1. Thus the 
series of (9) is convergent for (t l  < 1; and from (8) it is seen that for any It1 < 1, the 
Ic,t"l+ 0 as n + 00. Consequently it is established that p < 1. Moreover, since as t + 1- 
higher terms in (8)  become more important, the asymptotic behaviour of F (  t )  as t + 1- 
can be used to deduce the asympotic behaviour of c, as n + 00. To this end we seek 
the terms in (9) which make the dominant contributions. From (7) these contributions 
are seen to occur near the m-value 

where fm(f) is a maximum. Then expanding the logarithm of the summand in (9) 
about the maximum value at m = mo, we find that, as t + 1-, 

+ 2  I:* {x+ln(l-e-")} dx(1n t-')-'+$ln(ln t-')+(constant). (11) 

Next if a functional form as in (1) is assumed for c, and substituted in (8), then for 
t +  1- it may be shown that 

In F (  t) +, -(aP)'/('-@)(1n 1 - P  i - I ) - @ / ( ' - P )  

P 

(12) 

Upon comparison of the expressions in (1 1) and (12) one sees that p = 1 (in agreement 
with our expectation) and a = -1. Numerical evaluation of the integral in (1 1) yields 
an estimate for a = 2.565 096 60. This value is very close to .irJ2/3, a constant which 
arises (see, e.g., Andrews 1976) in the enumeration of all partitions (of large integers). 

Another generating function G ( t )  may be introduced to check some other aspects 
of our heueristic argument. Let G ( t )  be the generating function essentially for c, 
times the average number m, of turns in an n-step spiral; we define it as 

f f + l - p / 2  
1-P 

- In(ln t - ' )  + (constant). 

Assuming again (1) and m, - no, we find that an asymptotic analysis like that already 
described for F ( t )  leads to P =$, in agreement with (4). 

Next the relation between the class of purely spiralling SAWS and the more general 
class including scroll-like structures is addressed. Keeping in mind the process for 
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joining a pair of pure spirals to form a scroll, as indicated in figure 1, we anticipate 
the number c; of n-step scroll-like SAWS to be related to counts for the pure spirals, 

n 

p = o  
c;- c Cpcfl-p 

(The proportionality constant here should be the inverse of an average number of 
steps located in the region between the two spirals.) Then from the assumed asymptotic 
form of ( l ) ,  with p =$, 

- -  
exp( a J 2 J n ) .  (15) c:, - n2a+3 /4  

Thus the asymptotic behaviour_of c; takes the same form as that for c,, except that 
a' = 2 a  + 3/4 = -:and a' = a J 2  = 2.rr/J3 replace a and a. Of course, the size exponent 
for r:, remains the same, v' = v = $. 

As a final check Privman's (1983) data on the whole scroll-like class of SAWS up 
through n = 40 steps may be analysed. The problem is to distinguish at n S 40 the 
difference between n-dependences na '  and exp[a'( np')], which are more comparable 
than has usually been encountered in SAW problems. Thus we used combinations of 
c, values in an attempt to cancel out either one type of dependence or the other. The 
na' and exp[ a( np')] dependences, respectively, should be eliminated in the combina- 
tions 

The expected large n asymptotic behaviour of these combinations is 

A, + In[ 8a  '( p' ) ' ]  + ( p ' - 3) In n 

n + 2  
n 

(17) 
[ (n+2)p ' -n+']In-  

n -2  
-(n-2)w']~n-- 

A plot of the data for A, against In n lies close anlong a straight line with slope and 
intercept leading to p' = 0.50 ~4 and a ' s  3.6 = a f i ,  as expected. The plot of the data 
for B, with p' = 4 involves some scatter of points due to evident oscillations of periods 
2 and 6. Nevertheless, these data points consistently approach an asymptotic line 
through the origin; its slope yields a' = -1.25 = -:, as expected. The disagreement 
with Privman's (1983) estimates is due to his incorrect assumption that p' = 1. 

In conclusion, three types of approaches have been exploited to treat spiral SAWS. 

Results which webelieve to be exactsre obtained: p = v = p = p' = v' = p' = $, a = -1, 
a' = -5, a = d 2 / 3 ,  and a' = 2.rr/J3. That the size exponent v is $ implies that the 
spiral SAWS are unusually compact. Further, our value of the enumeration exponent 
p =$ is reminiscent of a similar exponent arising in the enumeration of maximally 
compact SAWS in two dimensions (see, e.g., Gordon et a1 1976, or Schmalz et a1 1984). 
The spiral SAWS are confirmed to lie in a universality class distinct from those for other 
previously considered directed SAWS. 
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Note added in proof. Recently, A J Guttman and N C Wormald sent us a preprint of a manuscript submitted 
to J. Phys. A in which they obtain a value of - f  for the exponent, a’, in c ; ,  in contrast to our value of -: 
which we now believe to be incorrect. The fault in our approach was the assumption that the proportionality 
factor in (14)  was constant rather than varying as n-l’’, which results from a more detailed consideration of 
the A’s. It is the atypical A’s of length nl” at the outer end of the spirals which are  important in (14) whereas 
it is the typical A’s of finite length in the middle of the spirals which are addressed in the heuristic arguments. 
We would like to thank Professor Guttman for sending us the preprint af his work prior to publication. 
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